Computational structure of visual callosal axons.

نویسندگان

  • G M Innocenti
  • P Lehmann
  • J C Houzel
چکیده

We analysed the activation profiles obtained by simulating invasion of an orthodromic action potential in eleven anterogradely filled and serially reconstructed terminal arbors of callosal axons originating and terminating in areas 17 and 18 of the adult cat. This was done in order to understand how geometry relates to computational properties of axons. In the simulation, conduction from the callosal midline to the first bouton caused activation latencies of 0.9-3.2 ms, compatible with published electrophysiological values. Activation latencies of the total set of terminal boutons varied across arbors between 0.3 and 2.7 ms. Arbors distributed boutons in tangentially segregated terminal columns spanning one or, more often, several layers. Individual columns of one axon were frequently activated synchronously or else with a few hundred microseconds of each other. Synchronous activation of spatially separate columns is achieved by: (i) long primary or secondary branches of similar calibre running nearly parallel to each other for several millimetres; (ii) variations in the calibre of branches serially fed to separate columns by the same primary or secondary branch; (iii) exchange of high-order or preterminal branches across columns. The long, parallel branches blatantly violate principles of axonal economy. Simulated alterations of the axonal arbors indicate that similar spatiotemporal patterns of activity could, in principle, be obtained by less axon-costly architectures. The structure of axonal arbors, therefore, may not be determined solely by the type of spatiotemporal activation profiles it achieves in the cortex but also by other constraints, in particular those imposed by developmental mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual inter-hemispheric processing: constraints and potentialities set by axonal morphology.

The largest bundle of axonal fibers in the entire mammalian brain, namely the corpus callosum, is the pathway through which almost half a billion neurons scattered over all neocortical areas can exert an influence on their contralateral targets. These fibers are thus crucial participants in the numerous cortical functions requiring collaborative processing of information across the hemispheres....

متن کامل

Interhemispheric synchrony in visual cortex and abnormal postnatal visual experience.

The question of whether neural synchrony may be preserved in adult mammalian visual cortex despite abnormal postnatal visual experience was investigated by combining anatomical and computational approaches. Single callosal axons in visual cortex of early monocularly deprived (MD) adult cats were labeled anterogradely with biocytin in vivo and reconstructed in 3D. Spike propagation was then orth...

متن کامل

Functional selectivity of interhemispheric connections in cat visual cortex.

The functional specificity of callosal connections was investigated in visual areas 17 and 18 of adult cats, by combining in vivo optical imaging of intrinsic signals with labeling of callosal axons. Local injections of neuronal tracers were performed in one hemisphere and eight single callosal axons were reconstructed in the opposite hemisphere. The distributions of injection sites and callosa...

متن کامل

The distribution of the cells of origin of callosal projections in cat visual cortex.

The distribution of neurons projecting through the corpus callosum (callosal neurons) was examined in retinotopically defined areas of cat visual cortex. As many callosal neurons as possible were labeled in a single animal by surgically dividing the posterior two-thirds of the corpus callosum and exposing the cut ends of callosal axons to horseradish peroxidase. The distribution of callosal neu...

متن کامل

Visual callosal connections: role in visual processing in health and disease.

Visual cortical areas in the two sides of the brain are interconnected by interhemispheric fibers passing through the splenium of the corpus callosum. In this review, we summarize data concerning the anatomical features of visual callosal connections, their roles in basic visual processing, and how their alterations contribute to visual deficits in different human neuropathologies. Splenial fib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 1994